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Quantum coherence effects in atomic media such as electromagnetically-induced
transparency and absorption, lasing without inversion, super-radiance and gain-assisted
superluminality have become well-known in atomic physics. But these effects are not
unique to atoms, nor are they uniquely quantum in nature, but rather are fundamental to
systems of coherently coupled oscillators. In this talk I will review a variety of analogous
photonic coherence phenomena that can occur in passive and active coupled optical
resonators. Specifically, I will examine the evolution of the response that can occur upon
the addition of a second resonator, to a single resonator that is side-coupled to a
waveguide, as the coupling is increased, and discuss the conditions for slow and fast light
propagation, coupled-resonator-induced transparency and absorption, lasing without gain,
and gain-assisted superluminal pulse propagation. Finally, I will discuss the application
of these systems to laser stabilization and gyroscopy.
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Outline

» WGM Splitting
» Coherence Effects in Passive Systems

% Coupled-Resonator-Induced Transparency and
Absorption (CRIT and CRIA)

- = Gain-Assisted Superluminality (GAS)
» Coherence Effects in Active Systems
= Lasing Without Gain (LWG)
%= Reduced lasing thresholds

» Application: laser gyroscopy
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Whispering-Gallery-Mode Splitting

D.D. Smith, H. Chang, K. Fuller,

Mode splitting in p-particles MAMMMM

1..55 ‘ 1.I60 | 1.’65 | 1.:70 . 1.:75 209.90 300 300.1
1/3 (um’) v (THz)

Mode splitting in ring resonators

N=5

¢ Consequence of constructive (N odd) or destructive (N even) interference

¢ N resonators yiel
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Coupled Resonators  Coerent |
uperposition

= Two Level Atom

Coupled Modes = Schrod. Eqn. in RWA:

’wt =E (1)|1

Slow-varying
amplitudes
Non-Hermitian

Hamiltonian

7. =cos(Qt/2)+i(A/Q)sin (/2
7. =i(Q, [Q)sin(Q1/2

N o (X2 2 Complex Generalized
€2 \/A +IQRl -~ Rabi Frequency

If y,, # 0 — H 1s non-Hermitian, dressed states couple
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Coupled Resonator
Density Matrix:
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transmittance, 7,(7)



Coherent Photon Transtfer in
Coupled Resonators
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» Only coherent excitation yields full transfer

» Sensitive to pulse area and frequency

» Adiabatic transfer independent of pulse area
but requires long slow chirp



Stimulated Raman Adiabatic Passage
(STIRAP)
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K2 » Counterintuitive pulse sequence
. » Insensitive to pulse area — rapid transfer

» Regquires 2 but not 1 photon resonance




Coupled-Resonator-Induced
Transparency (CRIT) =] Anomalous
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Coupled-Resonator-Induced Absorption
(CRIA)

» Analogous to Electromagnetically-Induced Absorption (EIA)
» Typically results from Constructive Interference!

» Requires the second resonator to be over-coupled (7, < a,)
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D.D. Smith, H. Chang, K. Fuller, JOSA B 20, 1967 (2003).

N Coupled Ring Resonators
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Frequency Response
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» Slow or Fast Light » CRIT or CRIA




Single Resonator
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Impulse Response Coupled Resonators:
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FDTD of CRIA and CRIT




Critical Coupling of CRIT and CRIA
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Slow and Fast Pulse Propagation
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> Slow light with no absorption
» But fast light requires loss to obey causality / Relativity
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Gain-Assisted Superluminality
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H. Chang, D.D. Smith, JOSA B (2005).

» Fast light in a transparent medium!
» Gain-assist reverses dispersion / CRIA boosted to transparency

» Still does not violate causality

Wang, Kuzmich, Dogarlu, Nature, 406, 277 (2000).




transmittance transmittance

Lasing in Coupled Resonators

» Coherence affects lasing threshold!

» LWI and Super-radiance analogs
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Lasing Without Gain 1n Coupled Resonators

¢ Analogous to LWI (N,<N,): Gain in resonator 1 < Loss in resonator 2

¢ Lasing occurs by photon trapping — indistinguishability required.
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Reduced Thresholds in Coupled Resonators

¢ Threshold for coupled resonators < threshold for single resonator

¢ Resonators must be properly phased for constructive interference
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Rel. beat frequency (€/ a)Z)

Beat Frequency and Relative Modulation
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Laser Gyro Enhancement
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Summary and Conclusions

» Coupled resonators are analogous to multilevel atoms and
are described approximately by the damped Rabi problem.

» Photons can be shuffled from one resonator to another
using coherent and adiabatic photon transfer techniques.
Coupled resonators can store light.

» Coherence phenomena such as EIT, EIA, GAS, and LWI
are fundamental to systems of coherently coupled
oscillators. They are not unique to atoms nor are they
uniquely quantum phenomena.

» The dispersion in optical micro-resonators has application
to the improvement of laser gyroscopes.
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